Effect of Climate Change on Service Life of High Volume Fly Ash Concrete Subjected to Carbonation—A Korean Case Study

نویسندگان

  • Ki-Bong Park
  • Yong Han Ahn
چکیده

The increase in CO2 concentrations and global warming will increase the carbonation depth of concrete. Furthermore, temperature rise will increase the rate of corrosion of steel rebar after carbonation. On the other hand, compared with normal concrete, high volume fly ash (HVFA) concrete is more vulnerable to carbonation-induced corrosion. Carbonation durability design with climate change is crucial to the rational use of HVFA concrete. This study presents a probabilistic approach that predicts the service life of HVFA concrete structures subjected to carbonation-induced corrosion resulting from increasing CO2 concentrations and temperatures. First, in the corrosion initiation stage, a hydration-carbonation integration model is used to evaluate the contents of the carbonatable material, porosity, and carbonation depth of HVFA concrete. The Monte Carlo method is adopted to determine the probability of corrosion initiation. Second, in the corrosion propagation stage, an updated model is proposed to evaluate the rate of corrosion, degree of corrosion for cover cracking of concrete, and probability of corrosion cracking. Third, the whole service life is determined considering both corrosion initiation stage and corrosion propagation stage. The analysis results show that climate change creates a significant impact on the service life of durable concrete.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Crack and Climate Change on Service Life of Concrete Subjected to Carbonation

Carbonation is among the primary reasons for the initiation of the corrosion of steel rebar in reinforced concrete (RC) structures. Due to structural loading effects and environmental actions, inevitable cracks have frequently occurred in concrete structures since the early ages. Additionally, climate change, which entails increases in CO2 concentration and environmental temperature, will also ...

متن کامل

Durability Performance of Self Compacting Concrete Incorporating Alccofine and Fly Ash

The cost associated with the application of large volume of cement and synthetic admixtures was one of the major drawbacks of Self Compacting Concrete (SCC), which can be reduced by the use of supplementary cementitious materials (SCM). When the demand of cement reduces, the release of carbon dioxide (CO2) from cement industries will come down, which has a positive impact on global w...

متن کامل

Influence of High Temperatures on Flexural Strength of Foamed Concrete Containing Fly Ash and Polypropylene Fiber

In this study, the elevated temperature flexural strengths of lightweight foamed concrete (LFC) containing fly ash (FA) and polypropylene fiber (PF) was investigated experimentally and statistically. The variables included were the temperature degrees (in a range of 20 to 600°C), LFC densities of 600, 800, 1000, 1200 and 1400 kg/m3 and additive content. Two mixes were made by replacing 15% and ...

متن کامل

High-performance, High-volume Fly Ash Concrete for Sustainable Development

For a variety of reasons, the concrete construction industry is not sustainable. First, it consumes huge quantities of virgin materials. Second, the principal binder in concrete is portland cement, the production of which is a major contributor to greenhouse gas emissions that are implicated in global warming and climate change. Third, many concrete structures suffer from lack of durability whi...

متن کامل

Influence of Blended Cements with Calcareous Fly Ash on Chloride Ion Migration and Carbonation Resistance of Concrete for Durable Structures

The objective of this paper is to examine the possible use of new blended cements containing calcareous fly ash in structural concrete, potentially adequate for structural elements of nuclear power plants. The investigation included five new cements made with different contents of non-clinker constituents: calcareous fly ash, siliceous fly ash, ground granulated blastfurnace slag, and a referen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017